25 research outputs found

    Oxygen isotope geochemistry of the second HSDP core

    Get PDF
    Oxygen isotope ratios were measured in olivine phenocrysts (~1 mm diameter), olivine microphenocrysts (generally ~100–200 µm diameter), glass, and/or matrix from 89 samples collected from depths down to 3079.7 m in the second, and main, HSDP core (HSDP-2). Olivine phenocrysts from 11 samples from Mauna Loa and 34 samples from the submarine section of Mauna Kea volcano have delta18O values that are similar to one another (5.11 ± 0.10‰, 1sigma, for Mauna Loa; 5.01 ± 0.07‰, for submarine Mauna Kea) and within the range of values typical of olivines from oceanic basalts (delta18O of ~5.0 to 5.2‰). In contrast, delta18O values of olivine phenocrysts from 20 samples taken from the subaerial section of Mauna Kea volcano (278 to 1037 mbsl) average 4.79 ± 0.13‰. Microphenocrysts in both the subaerial (n = 2) and submarine (n = 24) sections of Mauna Kea are on average ~0.2‰ lower in delta18O than phenocrysts within the same stratigraphic interval; those in submarine Mauna Kea lavas have an average delta18O of 4.83 ± 0.11‰. Microphenocrysts in submarine Mauna Kea lavas and phencrysts in Mauna Loa lavas are the only population of olivines considered in this study that are typically in oxygen isotope exchange equilibrium with coexisting glass or groundmass. These data confirm the previous observation that the stratigraphic boundary between Mauna Loa and Mauna Kea lavas defines a shift from “normal” to unusually low delta18O values. Significantly, they also document that the distinctive 18O-depleted character of subaerial Mauna Kea lavas is absent in phenocrysts of submarine Mauna Kea lavas. Several lines of evidence suggest that little if any of the observed variations in delta18O can be attributed to subsolidus alteration or equilibrium fractionations accompanying partial melting or crystallization. Instead, they reflect variable proportions of an 18O-depleted source component or contaminant from the lithosphere and/or volcanic edifice that is absent in or only a trace constituent of subaerial Mauna Loa lavas, a minor component of submarine Mauna Kea lavas, and a major component of subaerial Mauna Kea lavas. Relationships between the delta18O of phenocrysts, microphenocrysts, and glass or groundmass indicate that this component (when present) was added over the course of crystallization-differentiation. This process must have taken place in the lithosphere and most likely at depths of between ~5 and 15 km. We conclude that the low-delta18O component is either a contaminant from the volcanic edifice that was sampled in increasingly greater proportions as the volcano drifted off the center of the Hawaiian plume or a partial melt of low-delta18O, hydrothermally altered perdotites in the shallow Pacific lithosphere that increasingly contributed to Mauna Kea lavas near end of the volcano's shield building stage. The first of these alternatives is favored by the difference in delta18O between subaerial and submarine Mauna Kea lavas, whereas the second is favored by systematic differences in radiogenic and trace element composition between higher and lower delta18O lavas

    Identifying thermogenic and microbial methane in deep water Gulf of Mexico Reservoirs

    Get PDF
    The Gulf of Mexico (GOM) produces 5% of total U.S. dry gas production (USEIA, 2016). Despite this, the proportion of microbial and thermogenic methane in discovered and producing fields from this area is still not well understood. Understanding the relative contributions of these sources in subsurface environments is important to understanding how and where economically substantial amounts of methane form. In addition, this information will help identify sources of environmental emissions of hydrocarbons to the atmosphere. We apply stable isotopes including methane clumped-isotope measurements to solution and associated gases from several producing fields in the U.S. Gulf of Mexico to estimate the proportions, properties and origins of microbial and thermogenic endmembers. Clumped isotopes of methane are unique indicators of whether methane is at thermodynamic isotopic equilibrium or affected by kinetic processes. The clumped methane thermometer can provide insights into formation temperatures and/or into kinetic processes such as microbial methanogenesis, early catagenetic processes, mixing, combinatorial processes, and diffusion. In this data set, we find that some fluids have clumped isotope methane apparent temperatures consistent with the methane component being produced solely by the thermogenic breakdown of larger organic molecules at substantially greater temperatures than those reached in shallow reservoirs. A portion of these reservoirs with hot clumped isotope methane temperatures are consistent with exhibiting a kinetic isotope effect. Other reservoirs have clumped isotope methane apparent temperatures, and other isotopic and molecular proportions, consistent with mixtures of microbial and thermogenic methane. We show that in certain cases the evidence is most consistent with formation of the microbial methane in the current reservoir. However, in other cases the methane is produced at significantly shallower depths and is then transported to greater depths as a result of post generation burial of methane bearing sedimentary sequences to the current reservoir conditions. For the first time, we show that methane of an unambiguously purely microbial origin (i.e. those that do not contain obvious contributions of thermogenic methane) is dominantly generated at temperatures less than 60 °C, despite burial to greater depths. This finding suggests that, while microorganisms are able to generate methane at temperatures up to 105 °C under laboratory conditions (Brock, 1985), in the Gulf of Mexico, microbial methane is dominantly produced in the 20–60 °C window

    Oxygen Isotope Variations in Recent Magnesian Lavas from Iceland’s Northern Neovolcanic Zone

    Get PDF
    Geochemical variations of Icelandic lavas reflect both differences in the compositions and conditions and extents of melting of their sources (e.g., Thirlwall, 1994) and magmatic differentiation and crustal contamination (e.g., Gee et al., 1996). Discriminating between these two processes is key to constructing models of the composition and dynamics of the Iceland plume. Recent efforts to do so have focused on relatively magnesian lavas from the northern and western neovolcanic zones; Theistareykir volcano has been of particular importance for this work because of its abundance of magnesian lavas, the absence of a well-developed central volcanic complex, and the fact that it's lavas include the 'depleted' extreme to the array of compositional variations in Icelandic lavas generally (e.g., Elliott et al., 1991). We report here a study of oxygen-isotope variations in phenocrysts from recent Theistareykir lavas, conducted to search for evidence for both crustal contamination and oxygen isotope variations in the sub-Icelandic mantle

    Concentration and δD of molecular hydrogen in boreal forests: Ecosystem-scale systematics of atmospheric H_2

    Get PDF
    We examined the concentration and δD of atmospheric H2 in a boreal forest in interior Alaska to investigate the systematics of high latitude soil uptake at ecosystem scale. Samples collected during nighttime inversions exhibited vigorous H_2 uptake, with concentration negatively correlated with the concentration of CO_2 (−0.8 to −1.2 ppb H_2 per ppm CO_2) and negatively correlated with δD of H_2. We derived H_2 deposition rates of between 2 to 12 nmol m^(−2) s^(−1). These rates are comparable to those observed in lower latitude ecosystems. We also derive an average fractionation factor, α = D:H_(residual)/D:H_(consumed) = 0.94 ± 0.01 and suggestive evidence that α depends on forest maturity. Our results show that high northern latitude soils are a significant sink of molecular hydrogen indicating that the record of atmospheric H_2 may be sensitive to changes in climate and land use

    Identifying thermogenic and microbial methane in deep water Gulf of Mexico Reservoirs

    Get PDF
    The Gulf of Mexico (GOM) produces 5% of total U.S. dry gas production (USEIA, 2016). Despite this, the proportion of microbial and thermogenic methane in discovered and producing fields from this area is still not well understood. Understanding the relative contributions of these sources in subsurface environments is important to understanding how and where economically substantial amounts of methane form. In addition, this information will help identify sources of environmental emissions of hydrocarbons to the atmosphere. We apply stable isotopes including methane clumped-isotope measurements to solution and associated gases from several producing fields in the U.S. Gulf of Mexico to estimate the proportions, properties and origins of microbial and thermogenic endmembers. Clumped isotopes of methane are unique indicators of whether methane is at thermodynamic isotopic equilibrium or affected by kinetic processes. The clumped methane thermometer can provide insights into formation temperatures and/or into kinetic processes such as microbial methanogenesis, early catagenetic processes, mixing, combinatorial processes, and diffusion. In this data set, we find that some fluids have clumped isotope methane apparent temperatures consistent with the methane component being produced solely by the thermogenic breakdown of larger organic molecules at substantially greater temperatures than those reached in shallow reservoirs. A portion of these reservoirs with hot clumped isotope methane temperatures are consistent with exhibiting a kinetic isotope effect. Other reservoirs have clumped isotope methane apparent temperatures, and other isotopic and molecular proportions, consistent with mixtures of microbial and thermogenic methane. We show that in certain cases the evidence is most consistent with formation of the microbial methane in the current reservoir. However, in other cases the methane is produced at significantly shallower depths and is then transported to greater depths as a result of post generation burial of methane bearing sedimentary sequences to the current reservoir conditions. For the first time, we show that methane of an unambiguously purely microbial origin (i.e. those that do not contain obvious contributions of thermogenic methane) is dominantly generated at temperatures less than 60 °C, despite burial to greater depths. This finding suggests that, while microorganisms are able to generate methane at temperatures up to 105 °C under laboratory conditions (Brock, 1985), in the Gulf of Mexico, microbial methane is dominantly produced in the 20–60 °C window

    Isotopic evidence for quasi-equilibrium chemistry in thermally mature natural gases

    Get PDF
    Natural gas is a key energy resource, and understanding how it forms is important for predicting where it forms in economically important volumes. However, the origin of dry thermogenic natural gas is one of the most controversial topics in petroleum geochemistry, with several differing hypotheses proposed, including kinetic processes (such as thermal cleavage, phase partitioning during migration, and demethylation of aromatic rings) and equilibrium processes (such as transition metal catalysis). The dominant paradigm is that it is a product of kinetically controlled cracking of long-chain hydrocarbons. Here we show that C₂₊ n-alkane gases (ethane, propane, butane, and pentane) are initially produced by irreversible cracking chemistry, but, as thermal maturity increases, the isotopic distribution of these species approaches thermodynamic equilibrium, either at the conditions of gas formation or during reservoir storage, becoming indistinguishable from equilibrium in the most thermally mature gases. We also find that the pair of CO₂ and C₁ (methane) exhibit a separate pattern of mutual isotopic equilibrium (generally at reservoir conditions), suggesting that they form a second, quasi-equilibrated population, separate from the C₂ to C₅ compounds. This conclusion implies that new approaches should be taken to predicting the compositions of natural gases as functions of time, temperature, and source substrate. Additionally, an isotopically equilibrated state can serve as a reference frame for recognizing many secondary processes that may modify natural gases after their formation, such as biodegradation

    Isotopic evidence for quasi-equilibrium chemistry in thermally mature natural gases

    Get PDF
    Natural gas is a key energy resource, and understanding how it forms is important for predicting where it forms in economically important volumes. However, the origin of dry thermogenic natural gas is one of the most controversial topics in petroleum geochemistry, with several differing hypotheses proposed, including kinetic processes (such as thermal cleavage, phase partitioning during migration, and demethylation of aromatic rings) and equilibrium processes (such as transition metal catalysis). The dominant paradigm is that it is a product of kinetically controlled cracking of long-chain hydrocarbons. Here we show that C₂₊ n-alkane gases (ethane, propane, butane, and pentane) are initially produced by irreversible cracking chemistry, but, as thermal maturity increases, the isotopic distribution of these species approaches thermodynamic equilibrium, either at the conditions of gas formation or during reservoir storage, becoming indistinguishable from equilibrium in the most thermally mature gases. We also find that the pair of CO₂ and C₁ (methane) exhibit a separate pattern of mutual isotopic equilibrium (generally at reservoir conditions), suggesting that they form a second, quasi-equilibrated population, separate from the C₂ to C₅ compounds. This conclusion implies that new approaches should be taken to predicting the compositions of natural gases as functions of time, temperature, and source substrate. Additionally, an isotopically equilibrated state can serve as a reference frame for recognizing many secondary processes that may modify natural gases after their formation, such as biodegradation
    corecore